If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+3z=0
a = 4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·4·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*4}=\frac{-6}{8} =-3/4 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*4}=\frac{0}{8} =0 $
| 6x^2-28x+48=0 | | 9x+0=8x+6 | | 4x-12=2(x+3) | | -12=4d | | 1/3y+10=1/6y | | 4=10p-9p | | 174=x-6(-4-4) | | (15x)x2-10x=4 | | -3x+27=5x+3 | | 3m^2+-6m-6=0 | | -6(x+7)-6=-90 | | 6a+12=2a+4 | | 2(x-18)=8(x+9) | | 2/5=1/5-3/5p | | 22x-12=24x+12 | | 3x+24=6× | | -13t+18+12t=4t-17 | | 8=p-3 | | u-4/5=21/2 | | x+1/34=2/78 | | -33=5(x-3)-7x | | .2(3x-2)= | | 3(2x+3)=-6(x+9) | | 16=3g+64 | | -5x-21=4x+3 | | 6x+68=2(x-22) | | x+1.7=6.33 | | u+1=7 | | (11x-30)+(5x+2)=180 | | 6x+2=9-4 | | 3/5x-5/2=-7/3 | | 12-2.2r=2r+1 |